Phosphorylation of endothelial nitric oxide synthase by atypical PKC zeta contributes to angiopoietin-1-dependent inhibition of VEGF-induced endothelial permeability in vitro.

نویسندگان

  • Malika Oubaha
  • Jean-Philippe Gratton
چکیده

Vascular endothelial growth factor (VEGF) is a potent angiogenic cytokine that also increases vascular permeability. Nitric oxide (NO) released from endothelial cells, after activation of endothelial NO synthase (eNOS), contributes to proangiogenic and permeability effects of VEGF. Angiopoietin-1 (Ang-1), via Tie2 receptors, shares many of the proangiogenic properties of VEGF on endothelial cells. However, in contrast to VEGF, Ang-1 protects blood vessels from increased plasma leakage, which contributes to their stabilization. Because eNOS-derived NO is central to increased permeability in response to VEGF, we investigated whether Ang-1 interferes with VEGF signaling to eNOS. We demonstrate that Ang-1 stimulation of endothelial cells inhibits VEGF-induced NO release and transendothelial permeability. In contrast to VEGF stimulation, Ang-1 causes a marked protein kinase C (PKC)-dependent increase in phosphorylation of eNOS on the inhibitory Thr(497). Furthermore, using pharmacologic inhibitors, overexpression studies, and small interfering RNA-mediated gene silencing, we demonstrate that atypical PKC zeta is responsible for phosphorylation of eNOS on Thr(497) in response to Ang-1. In addition, PKC zeta knockdown abrogates the capacity of Ang-1 to inhibit VEGF-induced NO release and endothelial permeability. Thus, inhibition of NO production by Ang-1, via phosphorylation of eNOS on Thr(497) by PKC zeta, is responsible, at least in part, for inhibition of VEGF-stimulated endothelial permeability by Ang-1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation of endothelial nitric oxide synthase by atypical PKC contributes to angiopoietin-1–dependent inhibition of VEGF-induced endothelial permeability in vitro

Vascular endothelial growth factor (VEGF) is a potent angiogenic cytokine that also increases vascular permeability. Nitric oxide (NO) released from endothelial cells, after activation of endothelial NO synthase (eNOS), contributes to proangiogenic and permeability effects of VEGF. Angiopoietin-1 (Ang-1), via Tie2 receptors, shares many of the proangiogenic properties of VEGF on endothelial cel...

متن کامل

Divergence of angiogenic and vascular permeability signaling by VEGF: inhibition of protein kinase C suppresses VEGF-induced angiogenesis, but promotes VEGF-induced, NO-dependent vascular permeability.

Vascular endothelial growth factor (VEGF) promotes angiogenesis by a variety of mechanisms including stimulation of endothelial cell proliferation and migration and increasing vascular permeability. Although its mitogenic activity is mediated primarily by the beta(2)-isoforms of protein kinase C (PKC), little is known about the signaling pathways transducing its other physiological properties. ...

متن کامل

VEGF increases endothelial permeability by separate signaling pathways involving ERK-1/2 and nitric oxide.

We tested the hypothesis that VEGF regulates endothelial hyperpermeability to macromolecules by activating the ERK-1/2 MAPK pathway. We also tested whether PKC and nitric oxide (NO) mediate VEGF-induced increases in permeability via the ERK-1/2 pathway. FITC-Dextran 70 flux across human umbilical vein endothelial cell monolayers served as an index of permeability, whereas Western blots assessed...

متن کامل

Vascular endothelial growth factor stimulates differential signaling pathways in in vivo microcirculation.

Vascular endothelial growth factor (VEGF) induces mild vasodilation and strong increases in microvascular permeability. Using intravital microscopy and digital integrated optical intensity image analysis, we tested, in the hamster cheek pouch microcirculation, the hypothesis that differential signaling pathways in arterioles and venules represent an in vivo regulatory mechanism in the control o...

متن کامل

Periadventitial adipose tissue impairs coronary endothelial function via PKC- -dependent phosphorylation of nitric oxide synthase

Payne GA, Bohlen HG, Dincer ÜD, Borbouse L, Tune JD. Periadventitial adipose tissue impairs coronary endothelial function via PKC-dependent phosphorylation of nitric oxide synthase. Am J Physiol Heart Circ Physiol 297: H460–H465, 2009. First published May 29, 2009; doi:10.1152/ajpheart.00116.2009.—Endogenous periadventitial adipose-derived factors have been shown to contribute to coronary vascu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 114 15  شماره 

صفحات  -

تاریخ انتشار 2009